Asymmetric pore windows in MOF membranes for valorization of natural gas

  • US Energy Information Administration. International Energy Outlook 2021 (Narrative) (US Energy Information Administration, 2021).

  • Rufford, TE et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94123–154 (2012).

    Google Scholar article

  • Wu, Y. & Weckhuysen, BM. Separation and purification of hydrocarbons with porous materials. Angew. Chem. Int. Edn 6018930-18949 (2021).

    CAS Article Google Scholar

  • Siegelman, RL, Kim, EJ, & Long, JR. Porous materials for carbon dioxide separations. Nat. Mater. 201060-1072 (2021).

    ADS CAS Article Google Scholar

  • Bhatt, PM et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J. Am. Chem. Soc. 1389301-9307 (2016).

    CAS Article Google Scholar

  • Kim, EJ et al. Cooperative carbon capture and steam regeneration with tetraamine-added metal-organic frameworks. Science 369392–396 (2020).

    ADS CAS Article Google Scholar

  • Hou, Q. et al. Ultra-tuning the aperture size in stiffened ZIF-8_Cm frames with mixed-link strategy for enhanced CO2/ CH4 divorce. Angew. Chem. Int. Edn 58327–331 (2019).

    CAS Article Google Scholar

  • Carreon, MA Molecular sieve membranes for N2/ CH4 divorce. J. Mater. Res. 3332–43 (2018).

    ADS CAS Article Google Scholar

  • Li, Y. et al. An easy approach to synthesize SSZ-13 membranes with ultra-high N2 permits for efficient N2/ CH4 separations. J. Membr. Sci. 632119349 (2021).

    CAS Article Google Scholar

  • Huang, Y., Wang, L., Song, Z., Li, S. & Yu, M. Growth of high-quality, thickness-reduced zeolite membranes to N.2/ CH4 separation using high aspect ratio seeds.Angew. Chem. Int. Edn 5410843-10847 (2015).

    CAS Article Google Scholar

  • Zong, Z., Elsaidi, SK, Thallapally, PK & Carreon, MA Highly permeable AlPO-18 membranes for N2/ CH4 divorce. Ind. Eng. Chem. Res. 564113-4118 (2017).

    CAS Article Google Scholar

  • Kuznicki, SM et al. A titanosilicate molecular sieve with adjustable pores for large-scale selective adsorption of molecules. Nature 412720-724 (2001).

    ADS CAS Article Google Scholar

  • Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Ds. Mater. 6466–487 (2021).

    ADS CAS Article Google Scholar

  • Zhou, S. et al. Electrochemical synthesis of continuous metal-organic frame membranes for separation of hydrocarbons. Nat. Energy 6882–891 (2021).

    ADS CAS Article Google Scholar

  • Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharp propylene / propane separation. Sci. Adv. 4eaau1393 (2018).

    ADS CAS Article Google Scholar

  • Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the frame flexibility through bimetallic metal-organic frame (MOF) membranes for gas separation. J. Am. Chem. Soc. 1429582–9586 (2020).

    CAS PubMed Google Scholar

  • ağlayan, M. et al. Initial carbon-carbon bond formation in the early stages of methane dehydroaromatization. Angew. Chem. 13216884–16889 (2020).

    Google Scholar

  • Chowdhury, AD et al. Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbon process. Angew. Chem. Int. Edn 578095-8099 (2018).

    CAS Article Google Scholar

  • Bachman, JE, Smith, ZP, Li, T., Xu, T. & Long, JR. Nat. Mater. 15845–849 (2016).

    ADS CAS Article Google Scholar

  • Caro, J. Diffusion coefficients in nanoporous solids derived from membrane permeation measurements. Adsorption 27283–293 (2021).

    CAS Article Google Scholar

  • Kuo, J., Wang, K. & Chen, C. Advantages and Disadvantages of Various Nitrogen Removal Unit (NRU) technology. J. Nat. Gas Sci. Eng. 752–59 (2012).

    CAS Article Google Scholar

  • Spatolisano, E. & Pellegrini, LA CO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performance. Ind. Eng. Chem. Res. 604420-4429 (2021).

    CAS Article Google Scholar

  • Kidnay, AJ & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006).

  • Yu, C., Huang, C. & Tan, C. A review of CO2 captured by absorption and adsorption. Aerosol Air Qual. Res. 5745–749 (2012).

    Google Scholar article

  • Rivera-Tinoco, R. & Bouallou, C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 catch. J. Clean. Prod. 18875–880 (2010).

    CAS Article Google Scholar

  • Bae, HK, Kim, SY, & Lee, B. Simulation of CO2 removal in a split-flow gas sweetening process. Korean. J. Chem. Eng. 28643–648 (2011).

    CAS Article Google Scholar

  • Poe, WA & Mokhatab, S. Modeling, control and optimization of natural gas processing plants (Gulf Professional Publishing, 2016).

  • Perdew, JP, Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Ds. Easy. 773865-3868 (1996).

    ADS CAS Article Google Scholar

  • Blochl, PE Projector augmented-wave method. Phys. Ds. B 5017953-17979 (1994).

    ADS article Google Scholar

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave base set. Comput. Mater. Sci. 615-50 (1996).

    CAS Article Google Scholar

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Ds. B 591758-1775 (1999).

    ADS CAS Article Google Scholar

  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H. ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132154104 (2010).

    ADS article Google Scholar

  • Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/.


  • Notice: ob_end_flush(): failed to send buffer of zlib output compression (0) in /home/rvpgmedi/public_html/wp-includes/functions.php on line 5275