US Energy Information Administration. International Energy Outlook 2021 (Narrative) (US Energy Information Administration, 2021).
Rufford, TE et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94123–154 (2012).
Wu, Y. & Weckhuysen, BM. Separation and purification of hydrocarbons with porous materials. Angew. Chem. Int. Edn 6018930-18949 (2021).
Siegelman, RL, Kim, EJ, & Long, JR. Porous materials for carbon dioxide separations. Nat. Mater. 201060-1072 (2021).
Bhatt, PM et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J. Am. Chem. Soc. 1389301-9307 (2016).
Kim, EJ et al. Cooperative carbon capture and steam regeneration with tetraamine-added metal-organic frameworks. Science 369392–396 (2020).
Hou, Q. et al. Ultra-tuning the aperture size in stiffened ZIF-8_Cm frames with mixed-link strategy for enhanced CO2/ CH4 divorce. Angew. Chem. Int. Edn 58327–331 (2019).
Carreon, MA Molecular sieve membranes for N2/ CH4 divorce. J. Mater. Res. 3332–43 (2018).
Li, Y. et al. An easy approach to synthesize SSZ-13 membranes with ultra-high N2 permits for efficient N2/ CH4 separations. J. Membr. Sci. 632119349 (2021).
Huang, Y., Wang, L., Song, Z., Li, S. & Yu, M. Growth of high-quality, thickness-reduced zeolite membranes to N.2/ CH4 separation using high aspect ratio seeds.Angew. Chem. Int. Edn 5410843-10847 (2015).
Zong, Z., Elsaidi, SK, Thallapally, PK & Carreon, MA Highly permeable AlPO-18 membranes for N2/ CH4 divorce. Ind. Eng. Chem. Res. 564113-4118 (2017).
Kuznicki, SM et al. A titanosilicate molecular sieve with adjustable pores for large-scale selective adsorption of molecules. Nature 412720-724 (2001).
Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Ds. Mater. 6466–487 (2021).
Zhou, S. et al. Electrochemical synthesis of continuous metal-organic frame membranes for separation of hydrocarbons. Nat. Energy 6882–891 (2021).
Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharp propylene / propane separation. Sci. Adv. 4eaau1393 (2018).
Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the frame flexibility through bimetallic metal-organic frame (MOF) membranes for gas separation. J. Am. Chem. Soc. 1429582–9586 (2020).
ağlayan, M. et al. Initial carbon-carbon bond formation in the early stages of methane dehydroaromatization. Angew. Chem. 13216884–16889 (2020).
Google Scholar
Chowdhury, AD et al. Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbon process. Angew. Chem. Int. Edn 578095-8099 (2018).
Bachman, JE, Smith, ZP, Li, T., Xu, T. & Long, JR. Nat. Mater. 15845–849 (2016).
Caro, J. Diffusion coefficients in nanoporous solids derived from membrane permeation measurements. Adsorption 27283–293 (2021).
Kuo, J., Wang, K. & Chen, C. Advantages and Disadvantages of Various Nitrogen Removal Unit (NRU) technology. J. Nat. Gas Sci. Eng. 752–59 (2012).
Spatolisano, E. & Pellegrini, LA CO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performance. Ind. Eng. Chem. Res. 604420-4429 (2021).
Kidnay, AJ & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006).
Yu, C., Huang, C. & Tan, C. A review of CO2 captured by absorption and adsorption. Aerosol Air Qual. Res. 5745–749 (2012).
Rivera-Tinoco, R. & Bouallou, C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 catch. J. Clean. Prod. 18875–880 (2010).
Bae, HK, Kim, SY, & Lee, B. Simulation of CO2 removal in a split-flow gas sweetening process. Korean. J. Chem. Eng. 28643–648 (2011).
Poe, WA & Mokhatab, S. Modeling, control and optimization of natural gas processing plants (Gulf Professional Publishing, 2016).
Perdew, JP, Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Ds. Easy. 773865-3868 (1996).
Blochl, PE Projector augmented-wave method. Phys. Ds. B 5017953-17979 (1994).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave base set. Comput. Mater. Sci. 615-50 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Ds. B 591758-1775 (1999).
Grimme, S., Antony, J., Ehrlich, S., Krieg, H. ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132154104 (2010).
Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/.